Conditions for Multi-functionality in a Rhythm Generating Network Inspired by Turtle Scratching

نویسندگان

  • Abigail C. Snyder
  • Jonathan E. Rubin
چکیده

Rhythmic behaviors such as breathing, walking, and scratching are vital to many species. Such behaviors can emerge from groups of neurons, called central pattern generators, in the absence of rhythmic inputs. In vertebrates, the identification of the cells that constitute the central pattern generator for particular rhythmic behaviors is difficult, and often, its existence has only been inferred. For example, under experimental conditions, intact turtles generate several rhythmic scratch motor patterns corresponding to non-rhythmic stimulation of different body regions. These patterns feature alternating phases of motoneuron activation that occur repeatedly, with different patterns distinguished by the relative timing and duration of activity of hip extensor, hip flexor, and knee extensor motoneurons. While the central pattern generator network responsible for these outputs has not been located, there is hope to use motoneuron recordings to deduce its properties. To this end, this work presents a model of a previously proposed central pattern generator network and analyzes its capability to produce two distinct scratch rhythms from a single neuron pool, selected by different combinations of tonic drive parameters but with fixed strengths of connections within the network. We show through simulation that the proposed network can achieve the desired multi-functionality, even though it relies on hip unit generators to recruit appropriately timed knee extensor motoneuron activity, including a delay relative to hip activation in rostral scratch. Furthermore, we develop a phase space representation, focusing on the inputs to and the intrinsic slow variable of the knee extensor motoneuron, which we use to derive sufficient conditions for the network to realize each rhythm and which illustrates the role of a saddle-node bifurcation in achieving the knee extensor delay. This framework is harnessed to consider bistability and to make predictions about the responses of the scratch rhythms to input changes for future experimental testing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong interactions between spinal cord networks for locomotion and scratching.

Distinct rhythmic behaviors involving a common set of motoneurons and muscles can be generated by separate central nervous system (CNS) networks, a single network, or partly overlapping networks in invertebrates. Less is known for vertebrates. Simultaneous activation of two networks can reveal overlap or interactions between them. The turtle spinal cord contains networks that generate locomotio...

متن کامل

Rostral spinal cord segments are sufficient to generate a rhythm for both locomotion and scratching but affect their hip extensor phases differently.

Rostral segments of the spinal cord hindlimb enlargement are more important than caudal segments for generating locomotion and scratching rhythms in limbed vertebrates, but the adequacy of rostral segments has not been directly compared between locomotion and scratching. We separated caudal segments from immobilized low-spinal turtles by sequential spinal cord transections. After separation of ...

متن کامل

Evidence for specialized rhythm-generating mechanisms in the adult mammalian spinal cord.

Locomotion and scratch are characterized by alternation of flexion and extension phases within one hindlimb, which are mediated by rhythm-generating circuitry within the spinal cord. By definition, the rhythm generator controls cycle period, phase durations, and phase transitions. The aim was to determine whether rhythm-generating mechanisms for locomotion and scratch are similar in adult decer...

متن کامل

Modular organization of turtle spinal interneurons during normal and deletion fictive rostral scratching.

During normal rostral scratching in the spinal turtle, there is rhythmic alternation between hip-flexor and hip-extensor motor activity. During rostral scratching with hip-extensor deletions, there are successive bursts of hip-flexor motor activity and no activity in hip-extensor motor neurons. We characterized the ON- and OFF-phases of 72 descending propriospinal interneurons with distinct act...

متن کامل

Bilateral control of hindlimb scratching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of fictive rostral scratching.

In a spinal turtle, unilateral stimulation in the rostral scratch receptive field elicited rhythmic fictive rostral scratching in ipsilateral hindlimb motor neurons; contralateral hip motor activity was also rhythmic and out-of-phase with ipsilateral hip motor activity. When left and right rostral scratch receptive fields were stimulated simultaneously, bilateral rhythmic fictive rostral scratc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015